Postnatal muscle modification by myogenic factors modulates neuropathology and survival in an ALS mouse model

نویسندگان

  • Kevin H.J. Park
  • Sonia Franciosi
  • Blair R. Leavitt
چکیده

MyoD and myogenin are myogenic transcription factors preferentially expressed in adult fast and slow muscles, respectively. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder in which motor neuron loss is accompanied by muscle denervation and paralysis. Studies suggest that muscle phenotype may influence ALS disease progression. Here we demonstrate that myogenin gene transfer into muscle supports spinal cord motor neuron survival and muscle endplate innervation in the G93A SOD1 fALS mice. On the other hand, MyoD gene transfer decreases survival and enhances motor neuron degeneration and muscle denervation. Although an increase in motor neuron count is associated with increased succinic dehydrogenase staining in the muscle, muscle overexpression of PGC-1α does not improve survival or motor function. Our study suggests that postnatal muscle modification influences disease progression and demonstrates that the muscle expression of myogenic and metabolic regulators differentially impacts neuropathology associated with disease progression in the G93A SOD1 fALS mouse model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decreased mRNA expression of PGC-1α and PGC-1α-regulated factors in the SOD1G93A ALS mouse model and in human sporadic ALS.

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective motoneuron loss. Although the cause of ALS is unknown, oxidative stress, inflammation, and mitochondrial dysfunction have been identified as important components of its pathogenesis. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) plays a central role in the regulation of mit...

متن کامل

Cholinergic neuropathology in a mouse model of Alzheimer's disease

Transgenic mice over-expressing mutant human amyloid precursor protein (PDAPP mouse) develop several Alzheimer’s disease (AD)-like lesions including an age-related accumulation of amyloid-?-containing neuritic plaques. Although aged, heterozygous PDAPP mice also exhibit synaptic and glial cell changes, that is characteristic of AD pathology, no evidence of neurodegeneration has been observed. T...

متن کامل

Cholinergic neuropathology in a mouse model of Alzheimer's disease

Transgenic mice over-expressing mutant human amyloid precursor protein (PDAPP mouse) develop several Alzheimer’s disease (AD)-like lesions including an age-related accumulation of amyloid-?-containing neuritic plaques. Although aged, heterozygous PDAPP mice also exhibit synaptic and glial cell changes, that is characteristic of AD pathology, no evidence of neurodegeneration has been observed. T...

متن کامل

Pax3 induces differentiation of juvenile skeletal muscle stem cells without transcriptional upregulation of canonical myogenic regulatory factors.

Pax3 is an essential myogenic regulator of fetal and embryonic development, but its role in postnatal myogenesis remains a topic of debate. We show that constitutive expression of Pax3 in postnatal, juvenile mouse skeletal muscle stem cells, a subset of the heterogeneous satellite cell pool highly enriched for myogenic activity, potently induces differentiation. This differentiation-promoting a...

متن کامل

Cellular aspects of muscle growth: myogenic cell proliferation.

Muscle differentiation and growth are accomplished by two fundamental sets of cellular processes, protein accretion and cell proliferation. This review is restricted to a discussion of the role of cell proliferation in the growth of muscle during prenatal and postnatal life. More specifically, the discussion is divided into three topic areas, which include the role of muscle precursor cell prol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013